The heat pump market has become mature in many countries. There are millions of heat pumps installed worldwide. So any improvement in the installation, operation, and maintenance of heat pump systems can save a considerable amount of energy and cost, and reduce Green House Emissions to a large extent. The present study suggests a Smart Fault Detection and Diagnosis (SFDD) mechanism as the essential part of the next generation of heat pumps. A SFDD mechanism can minimize the installation and control errors, decrease the performance degradation during operation, avoid unnecessary visual inspections and components replacement, and reduce the maintenance cost and down-time of the system. To develop a SFDD mechanism, the first essential step is to obtain knowledge about the most common and expensive faults experienced by heat pumps. The heat pump manufacturers are one of the best sources to find out the most common and costliest faults occurring in heat pump systems during the first few years of their life. The present paper, as the first part of two, describes the results from a comprehensive study done on the most recent faults which were reported to some of the heat pump manufacturers in Sweden during the warranty period. The most common and the costliest faults in the Air/Air, Air/Water, Brine/Water, and exhaust air heat pumps are presented. Some of the faults such as faulty pressure switches or fans are only related to the heat pump unit, i.e. the thermodynamic cycle which facilitates the heat pumping cycle. Some of the common and expensive faults such as faulty shuttle or shunt valve are related to the faulty components in the heating systems. Generally, the results show that faults in Control and Electronics are almost the most common and costliest faults in all types of heat pumps. Faults in Control and Electronics include any fault related to control unit, electrical faults (such as short circuit, etc.), Printed Circuit Board (PCB), display, soft starter, overcurrent and motor protection relay, etc.