We derive global curvature estimates for closed, strictly star-shaped (n-2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(n-2)$$\\end{document}-convex hypersurfaces in warped product manifolds, which satisfy the prescribed (n-2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(n-2)$$\\end{document}-curvature equation with a general right-hand side. The proof can be readily adapted to establish curvature estimates for semi-convex solutions to the general k-curvature equation. Furthermore, it can also be used to prove the same estimates for k-convex solutions to the prescribed curvature measure type equations.
Read full abstract