Fengyun-3F (FY-3F) satellite was launched in 2023 with a MicroWave Temperature Sounder (MWTS) and a MicroWave Humidity Sounder (MWHS) onboard. This study evaluates the in-orbit performances of these two instruments and compares them with similar instruments onboard FY-3E and NOAA-20 satellites. It is found that the polarization of FY-3F MWHS at channel 1 is different from FY-3E from the quasi-horizontal to quasi-vertical, whereas the rest of the channels are revised to quasi-horizontal polarization. FY-3F MWTS performance at the upper air channels is, in general, better than FY-3E MWTS, with 0.3 K smaller in biases (O-B) and 0.13 K lower in standard deviation. The striping noise between FY-3E and 3F MWHS is similar in magnitude for most of the channels. The FY-3F can form a satellite constellation with the FY-3E and NOAA-20, enabling better monitoring of many weather events, such as typhoons and hurricanes, through the use of all three satellites. Using the Global-Scene Dependent Atmospheric Retrieval Testbed (GSDART), Typhoon Yagi warm cores are retrieved from both MWTS/MWHS and ATMS. It is shown the warm core structures of Typhoon Yagi are consistent with the three satellites in terms of their magnitudes and locations.
Read full abstract