Abstract

Abstract The transformation stage of extratropical transition characterizes the process by which a tropical cyclone transforms into an extratropical cyclone at higher latitudes in a cooler, more baroclinic environment. A 2006 study connects extremes in transformation-stage duration, post-transformation intensity change, and post-transformation thermal structure for North Atlantic basin tropical cyclones to synoptic-scale environmental variability. However, the 2006 study’s findings are derived from coarse atmospheric analyses that include fictitious tropical cyclone vortices applied to small samples with substantial variability between cases. This study updates the 2006 study’s findings using larger sample sizes, improvements in atmospheric reanalysis resolution and fidelity, and advances in scientific understanding over the last two decades. Transformation-stage duration is primarily a function of the duration that a transforming cyclone remains in an environment supportive of tropical development after entering a region supportive of baroclinic development. Post-transformation intensity-change composites are distinguished primarily by whether proper phasing is achieved between the transforming cyclone and upstream trough following the transformation stage. Finally, post-transformation thermal structure is distinguished primarily by whether the transforming cyclone moves into a strongly confluent synoptic-scale environment following the transformation stage. This study also presents the first composite analyses of North Atlantic tropical cyclones that maintain a lower-tropospheric warm-core structure post-transformation, termed instant warm-seclusion cyclones, which have previously only been diagnosed in case studies of individual North Atlantic tropical cyclones and for a limited climatology of western North Pacific tropical cyclones. These cyclones, comprising approximately one-third of all cases, are characterized by the transforming TC becoming negatively tilted with respect to the upstream trough and undergoing cyclonic Rossby wave breaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.