Background/Objectives: For transcatheter aortic valve implantation (TAVI) therapy, a catheter-guided crimped valve is deployed into the aortic root. Valve types such as Edwards balloon-expandable valves and Medtronic self-expandable valves come in different sizes and are chosen based on patient-specific aortic anatomy, including aortic root diameter measurement. Complications may arise due to variations in anatomical characteristics and the implantation procedure, making pre-implantation assessment important for predicting complications. Methods: Computational modeling, particularly finite element analysis (FEA), has become popular for assessing wall stresses and deformations in TAVI. In this study, a finite element model including the aorta, native leaflets, and TAVI device was used to simulate procedures and assess patient-specific wall stresses and deformations. Results: Using the Medtronic Evolut R valve, we simulated TAVI for 14 patients to analyze the effects of geometrical variations on structural stresses. Virtual TAVIs with different valve sizes were also simulated to study the influence of TAV size on stresses. Our results show that variations in aortic wall geometries and TAV sizes significantly influence wall stresses and deformations. Conclusions: Our study is one of the first comprehensive FEA investigations of aortic geometrical variations and valve sizes on post-TAVI stresses, demonstrating the non-linear relationship between aortic dimensions, TAV sizes, and wall stresses.
Read full abstract