Balance perturbations are used to study locomotor instability. However, these perturbations are designed to provoke a specific context of instability that may or may not generalize to a broader understanding of falls risk. The purpose of this study was to determine if the effect of balance perturbations on instability generalizes across contexts. 29 younger adults and 28 older adults completed four experimental trials, including unperturbed walking and walking while responding to three perturbation contexts: mediolateral optical flow, treadmill-induced slips, and lateral waist-pulls. We quantified the effect of perturbations as an absolute change in margin of stability from unperturbed walking. We found significant changes in mediolateral and anteroposterior margin of stability for all perturbations compared to unperturbed walking in both cohorts (p-values ≤ 0.042). In older adults, the mediolateral effects of lateral waist-pulls significantly correlated with those of optical flow perturbations and treadmill-induced slips (r ≥ 0.398, p-values ≤ 0.036). In younger adults but not in older adults, we found positive and significant correlations between the anteroposterior effect of waist-pull perturbations and optical flow perturbations, and the anteroposterior and mediolateral effect of treadmill-induced slips (r ≥ 0.428, p-values ≤ 0.021). We found no “goldilocks” perturbation paradigm to endorse that would support universal interpretations about locomotor instability. Building the most accurate patient profiles of instability likely requires a series of perturbation paradigms designed to emulate the variety of environmental contexts in which falls may occur.
Read full abstract