Analysis of geomorphological, geochronological, geochemical and geophysical features in the segment of the Taiwan-Luzon Arc between Taiwan and Luzon (the Bashi Segment) allows the recognition of a double arc structure. The two volcanic chains are separated by 50 km just north of Luzon (18°N), and converge near 20°N. Islets in the western chain are older and largely composed of volcanic rocks of Miocene to Pliocene age. They all show low relief, lateritic platforms and wave-cut terraces, and are covered by massive recrystallized limestone. In contrast, all active volcanoes in this segment of the Taiwan-Luzon Arc belong to the eastern chain, where most islets are Quaternary in age. The volcanoes have well-developed cone shapes, and well-preserved deposits of near-vent facies. Magmas of the eastern chain have higher K Si, (La) n,(La/Yb) n, and lowerε Nd than their counterparts at the same latitude in the western chain. Therefore, the magmas erupted in the eastern chain were derived from more enriched mantle sources than the magmas erupted in the western chain. Moreover, the available seismological data seem to suggest an abrupt increase of the dip angle from 30° at 18°N to 80° at 20°N. Thus, the double arc structure is located in the region where the Benioff zone suddenly changes. In analogy with the Lesser Antilles Arc, we propose a geodynamic model in which the double arc in the Bashi Strait is the tectonic manifestation of the subduction of the aseismic Scarborough Seamount Chain, the extinct mid-ocean ridge of the South China Sea. Before that ridge reached the Manila Trench, the western chain was the volcanic front. When the ridge reached the subduction zone at 5–4 Ma, its buoyancy temporarily interrupted the subduction thus causing a time gap in magmatic activity. Furthermore, this ridge-arc collision was probably also responsible for regional uplift causing extensive sub-aerial weathering and erosion as well as massive reef formation in the western chain. When subduction started again, the dip angle became shallower in response to the extra buoyancy of the downgoing ridge. If the depth of magma generation remained constant, the shallower dip angle would have naturally led to an eastward shift of the volcanic front thus producing the younger eastern chain. Moreover, we speculate that the abrupt change of the dip angle may have torn the downgoing slab thus allowing more enriched continental lithospheric material to invade the mantle wedge from the northwest, thus imprinting a geochemically more enriched signature on the magmas of the eastern chain.