Heterogeneity of ribosomal RNA (rRNA) sequences has recently emerged as a mechanism that can lead to subpopulations of specialized ribosomes. Our previous study showed that ribosomes containing highly divergent rRNAs expressed from the rrnI operon (I-ribosomes) can preferentially translate a subset of mRNAs such as hspA and tpiA in the Vibrio vulnificus CMCP6 strain. Here, we explored the functional conservation of I-ribosomes across Vibrio species. Exogenous expression of the rrnI operon in another V. vulnificus strain, MO6-24/O, and in another Vibrio species, V. fischeri (strain MJ11), decreased heat shock susceptibility by upregulating HspA expression. In addition, we provide direct evidence for the preferential synthesis of HspA by I-ribosomes in the V. vulnificus MO6-24/O strain. Furthermore, exogenous expression of rrnI in V. vulnificus MO6-24/O cells led to higher mortality of infected mice when compared to the wild-type (WT) strain and a strain expressing exogenous rrnG, a redundant rRNA gene in the V. vulnificus CMCP6 strain. Our findings suggest that specialized ribosomes bearing heterogeneous rRNAs play a conserved role in translational regulation among Vibrio species. This study shows the functional importance of rRNA heterogeneity in gene expression control by preferential translation of specific mRNAs, providing another layer of specialized ribosome system.
Read full abstract