Abstract
Topramezone is a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor. Due to its broad-spectrum, high efficiency, and low toxicity, topramezone is a candidate herbicide for the construction of genetically modified (GM) herbicide-resistant crops. In the present study, we screened a topramezone-resistant isolate Sphingobium sp. TPM-19 and cloned a topramezone-resistant HPPD gene (SphppD) from this isolate. SpHPPD shared the highest similarity (53%) with an HPPD from Vibrio vulnificus CMCP6. SpHPPD was synthesized in Escherichia coli BL21(DE3) and purified to homogeneity using Co2+-affinity chromatography. SpHPPD was found to be a monomer. The Km and kcat of SpHPPD for 4-hydroxyphenylpyruvate (4-HPP) were 82.8 μM and 15.0 s-1, respectively. SpHPPD showed high resistance to topramezone with half maximal inhibitory concentration (IC50) and Ki values of 5.2 and 2.5 μM, respectively. Additionally, SpHPPD also showed high resistance to isoxaflutole (DKN) (IC50: 8.7 μM; Ki: 6.0 μM) and mesotrione (IC50: 4.2 μM; Ki: 1.3 μM) and moderate resistance to tembotrione (IC50: 2.5 μM; Ki: 1.0 μM). The introduction of the SphppD gene into Arabidopsis thaliana enhanced obvious resistance against topramezone. In conclusion, this study provides a novel topramezone-resistant HPPD gene for the genetic engineering of GM herbicide-resistant crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.