Even the best-maintained water distribution network (WDN) might suffer pipe bursts occasionally, and the utility company must reconstruct the damaged sections of the system. The affected area must be segregated by closing the corresponding isolation valves; as a result, the required amount of drinking water might not be available. This paper explores the behaviour and topology of segments, especially their criticality from the viewpoint of the whole system. A novel, objective, dimensionless, segment-based quantity is proposed to evaluate the vulnerability of both the segments and the whole WDN against a single, incidental pipe break, computed as the product of the probability of failure within the segment and the amount of unserved consumption. 27 comprehensive real-life WDNs have been examined by means of the new metric and with the help of complex network theory, exploiting the concept of the degree distribution and topology-based structural properties (e.g. network diameter, clustering coefficient). It was found that metrics based purely on topology suggest different network behaviour as vulnerability analysis, which also includes the hydraulics. The investigation of the global network vulnerabilities has revealed several critically exposed systems, and the local distributions unveiled new properties of WDNs in the case of a random pipe break.
Read full abstract