The brain network of speech fluency has not yet been investigated via a study with a large and homogenous sample. This study analysed multimodal imaging data from 115 patients with low-grade glioma to explore the brain network of speech fluency. We applied voxel-based lesion-symptom mapping to identify domain-specific regions and white matter pathways associated with speech fluency. Direct cortical stimulation validated the domain-specific regions intra-operatively. We then performed connectivity-behaviour analysis with the aim of identifying connections that significantly correlated with speech fluency. Voxel-based lesion-symptom mapping analysis showed that damage to domain-specific regions (the middle frontal gyrus, the precentral gyrus, the orbital part of inferior frontal gyrus and the insula) and white matter pathways (corticospinal fasciculus, internal capsule, arcuate fasciculus, uncinate fasciculus, frontal aslant tract) are associated with reduced speech fluency. Furthermore, we identified connections emanating from these domain-specific regions that exhibited significant correlations with speech fluency. These findings illuminate the interaction between domain-specific regions and 17 domain-general regions-encompassing the superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus and rolandic operculum, superior temporal gyrus, temporal pole, inferior temporal pole, middle cingulate gyrus, supramarginal gyrus, fusiform gyrus, inferior parietal lobe, as well as subcortical structures such as thalamus-implicating their collective role in supporting fluent speech. Our detailed mapping of the speech fluency network offers a strategic foundation for clinicians to safeguard language function during the surgical intervention for brain tumours.