We report a way of tuning the flux pinning properties by controlling the size and number density of BaZrO3 (BZO) nanorods without much degradation of the superconducting properties. The BZO nanorods in REBa2Cu3Oy superconducting films are known as promising c-axis-correlated pinning centers. We fabricated SmBa2Cu3Oy (SmBCO) films with BZO nanorods by a low-temperature growth technique (LTG-SmBCO+BZO films). With decreasing substrate temperature of the upper layer Tsupper in LTG-SmBCO+BZO films, the diameter of BZO nanorods decreased and their number density increased, leading to a high matching field Bϕ. Also, the considerable upturn shifts in the irreversibility field line and plateau regions in the magnetic field dependence of critical current density Jc were observed in the range from Bϕ/3 to Bϕ. These results indicate that a Bose-glass-like state of vortices localized on BZO nanorods emerges, after overcoming the vortex glass state of vortices, which are frozen on inherent pointlike disorders within the films in this magnetic field range. With this technique, it is possible to tune the flux pinning properties.
Read full abstract