The statistical mechanics of thermally excited vortex lines with columnar defects can be mapped onto the physics of interacting quantum particles with quenched random disorder in one less dimension. The destruction of the Bose glass phase in type-II superconductors, when the external magnetic field is tilted sufficiently far from the column direction, is described by a poorly understood non-Hermitian quantum phase transition. We present here exact results for this transition in $(1+1)$ dimensions, obtained by mapping the problem in the hard core limit onto one-dimensional fermions described by a non-Hermitian tight binding model. Both site randomness and the relatively unexplored case of bond randomness are considered. Analysis near the mobility edge and near the band center in the latter case is facilitated by a real space renormalization group procedure used previously for Hermitian quantum problems with quenched randomness in one dimension.
Read full abstract