The development of condensed-phase detonation instabilities is simulated using moving window molecular dynamics and a generic AB model of a high explosive. It is found that an initially planar detonation front with one-dimensional flow can become unstable through development of transverse perturbations resulting in highly inhomogeneous and complex two- and three-dimensional distributions of pressure and other variables within the detonation front. Chemical reactions are initiated in localized transverse shock fronts and Mach stems with a pressure and temperature higher than those predicted by classic Zel'dovich, von Neumann, and Doering detonation theory. The two-dimensional cellular and transverse and three-dimensional pulsating detonation structures are found by varying the physico-chemical properties of AB energetic material, sample geometry, and boundary conditions. The different regimes of condensed-phase detonation that can develop from instabilities within a planar detonation front exhibit structures, although at a much smaller scale, that are similar to those observed in gases and diluted liquids.
Read full abstract