Abstract In this article, large amplitude vibration and thermal post-buckling of shape memory alloy (SMA) fiber reinforced hybrid composite beams with symmetric and asymmetric lay-up are analytically investigated. To predict the behavior of the smart laminated beam, the Euler–Bernoulli beam theory and the nonlinear von-Karman strain field are employed. Also, one-dimensional Brinson SMA model is utilized to calculate the recovery stress of SMA fibers in the case of restrained strain. Nonlinear governing equations of motion are derived via the Hamilton principle. Using an analytical approach based on the Galerkin procedure together with the simple harmonic motion assumption, a closed-form solution is obtained for the thermal post-buckling and nonlinear free vibration analysis of SMA fiber reinforced hybrid composite beams. Due to lack of any results on the free vibration and thermal stability of SMA fiber reinforced composite beams, the results obtained from the present solution for laminated composite beams without SMA fiber are compared with counterpart data in the open literature, which validate the present solution. Then, a set of parametric study is carried out to show the influence of SMA volume fraction, amount of prestrain in the SMA fiber, orientation of composite fiber, SMA-reinforced layer thickness to total thickness ratio, location of SMA layer, vibration amplitude, boundary conditions and temperature on the vibration characteristic of the laminated beam reinforced with SMA in the pre- and post-buckled domains.
Read full abstract