SRS MapCHECK (SMC) is a commercially available patient-specific quality assurance (PSQA) tool for stereotactic radiosurgery (SRS) applications. This study investigates the effects of degree of modulation, location off-axis, and low dose threshold (LDT) selection on gamma pass rates (GPRs) between SMC and treatment planning system, Analytical Anisotropic Algorithm (AAA), or Vancouver Island Monte Carlo (VMC++ algorithm) system calculated dose distributions. Volumetric-modulated arc therapy (VMAT) plans with modulation factors (MFs) ranging from 2.7 to 10.2 MU/cGy were delivered to SMC at isocenter and 6cm off-axis. SMC measured dose distributions were compared against AAA and VMC++ via gamma analysis (3%/1mm) with LDT of 10% to 80% using SNC Patient software. Comparing on-axis SMC dose against AAA and VMC++ with LDT of 10%, all AAA-calculated plans met the acceptance criteria of GPR≥90%, and only one VMC++ calculated plan was marginally outside the acceptance criteria with pass rate of 89.1%. Using LDT of 80% revealed decreasing GPR with increasing MF. For AAA, GPRs reduced from 100% at MF of 2.7 MU/cGy to 57% at MF of 10.2 MU/cGy, and for VMC++ calculated plans, the GPRs reduced from 89% to 60% in the same MF range. Comparison of SMC dose off-axis against AAA and VMC++ showed more pronounced reduction of GPR with increasing MF. For LDT of 10%, AAA GPRs reduced from 100% to 83% in the MF range of 2.7 to 9.8 MU/cGy, and VMC++ GPR reduced from 100% to 91% in the same range. With 80% LDT, GPRs dropped from 100% to 42% for both algorithms. MF, dose calculation algorithm, and LDT selections are vital in VMAT-based SRT PSQA. LDT of 80% enhances sensitivity of gamma analysis for detecting dose differences compared to 10% LDT. To achieve better agreement between calculated and SMC dose, it is recommended to limit the MF to 4.6 MU/cGy on-axis and 3.6 MU/cGy off-axis.