Noninvasive reconstruction of cardiac electrical activity has a great potential to support clinical decision making, planning, and treatment. Recently, significant progress has been made in the estimation of the cardiac activation from body surface potential maps (BSPMs) using boundary element method (BEM) with the equivalent double layer (EDL) as a source model. In this formulation, noninvasive assessment of activation times results in a nonlinear optimization problem with an initial estimate calculated with the fastest route algorithm (FRA). Each FRA-simulated activation sequence is converted into the ECG. The best initialization is determined by the sequence providing the highest correlation between predicted and measured potentials. We quantitatively assess the effects of the forward modeling errors on the FRA-based initialization. We present three simulation setups to investigate the effects of volume conductor model simplifications, neglecting the cardiac anisotropy and geometrical errors on the localization of ectopic beats starting on the ventricular surface. For the analysis, 12-lead ECG and 99 electrodes BSPM system were used. The areas in the heart exposing the largest localization errors were volume conductor model and electrode configuration specific with an average error <10mm. The results show the robustness of the FRA-based initialization with respect to the considered modeling errors.