In this paper, a class of competitive Lotka–Volterra systems are considered that have distributed delays and constant coefficients on interaction terms and have time dependent growth rate vectors with an asymptotic average. Under the assumption that all proper subsystems are permanent, it is shown that the asymptotic behaviour of the system is determined by the relationship between an equilibrium and a nullcline plane of the corresponding autonomous system: if the equilibrium is below the plane then the system is permanent; if the equilibrium is above the plane then this species will go extinct in an exponential rate while the other species will survive. Similar asymptotic behaviour is also retained under an alternative assumption.