In this work, we propose an extension of the algebraic formulation of the Tau method for the numerical solution of the nonlinear Volterra-Hammerstein integral equations. This extension is based on the operational Tau method with arbitrary polynomial basis functions for constructing the algebraic equivalent representation of the problem. This representation is an special semi lower triangular system whose solution gives the components of the vector solution. We will show that the operational Tau matrix representation for the integration of the nonlinear function can be represented by an upper triangular Toeplitz matrix. Finally, numerical results are included to demonstrate the validity and applicability of the method and some comparisons are made with existing results. Our numerical experiments show that the accuracy of the Tau approximate solution is independent of the selection of the basis functions.