Although the River Nile Basin receives annually ca. 1600 billion cubic meters of rainfall, yet some countries within the Basin are suffering much from lack of water. The great changes in the physiography of the Nile Basin are well displayed on its many high mountains, mostly basement rocks that are overlain by clastic sediments and capped by volcanics in eastern and western Sudan. The central part of the Nile Basin is nearly flat including volcanics in the Bayuda Mountains and volcanic cones and plateaus in southwestern Egypt. The high mountains bordering the Nile Basin range in elevation from 3300 to 4600 m.a.s.l. in the Ethiopian volcanic plateau in the east to ca. 3070 m.a.s.l. in the western Gebel Marra, and 1310 m.a.s.l. in the Ennedi Mountains in northwestern Sudan. In central Sudan, the Nile Valley rises approximately 200–300 m.a.s.l. In Egypt, the River Nile is bounded by the Red Sea Mountains in the east, assuming ca. 1000–2600 m.a.s.l., mostly of basement rocks, which are covered to the north of Aswan by Phanerozoic sediments sloping to the west, passing by the Nile Valley and continuing through the Western Desert. The Phanerozoic cover on both sides of the Nile is known as the Eastern and Western Limestone Plateaus. These plateaus assume elevations varying from 300 to 350 m.a.s.l. near the eastern bank of the Nile to 400–500 m.a.s.l. south Luxor at Esna and west of Aswan. The nearly flat Sahara west of the Nile Valley rises gradually westward until it reaches Gebel Uweinat in the triple junction between Egypt, Sudan, and Libya. Gebel Uweinat has an elevation of 1900 m.a.s.l. sloping northward towards the Gilf Kebir Plateau, which is 1100 m.a.s.l. The high mountains and plateaus in the southern and western Egypt slope gradually northward where the Qattara Depression is located near the Mediterranean coast. The depression is −134 m.b.s.l., which is the lowest natural point in Africa. All these physiographic features in Sudan and Egypt are related to (i) the separation of South America from Africa, which started in the Late Paleozoic and continued up to the Cretaceous, giving rise to several generally E–W-oriented tectonic features inside Africa, (ii) the uplift of the Red Sea Mountains and their continuation inside Africa resulted in the East African Rift System (EARS), (iii) the Guinea–Nubia Lineament crossing Africa from the Atlantic to the Red Sea where many havoc trends, mostly E–W-trending faults, and uplifted basement features pierce the overlying sediments, (iv) parallel and longitudinal structures associated with volcanic plateaus and cones extend from west Sudan (Gebel Marra) to Ethiopian Plateau, passing by volcanics and plume features in between and the basins in east Africa were subjected to wrench related inversions, and (v) the Sudd linear E–W area stretching more than 1000 km between Gebel Marra in the west, passing by South Sudan and reaching southwestern Ethiopia. Here, fluviatile and subsurface waters led to ponds, lakes, and wet areas that are hard to exploit. The impact of these features led to the present south to north River Nile, but passing by many changes in the direction of its many tributaries and slope reversal of some of the major extinct rivers, either sectors of the main Nile or the rivers once flowed into the main river. The paleoclimatic changes during the Quaternary period: wet and dry have a great effect on the physiographic features and slope reversal of the Nile Basin drainage system.
Read full abstract