We determine new tomographic models of Pn anisotropic velocity and Sn isotropic velocity in and around the Wudalianchi volcanic area by inverting high-quality Pn and Sn arrival times manually picked from waveforms recorded at the newly deployed high-dense WAVESArray portable seismic stations. Our high-resolution Pn and Sn velocity models reveal strong lateral heterogeneities in the uppermost mantle under the study region. The average Pn and Sn velocities in the uppermost mantle are 8.2 and 4.5 km/s, respectively. Both Pn and Sn velocity models exhibit obvious low-velocity (low-V) anomalies under the Wudalianchi and Keluo volcanoes, whereas under the Songliao basin distinct high-velocity (high-V) zones are revealed. In particular, our Pn model reveals two separate low-V anomalies under the Nuomihe and Halaha volcanic groups, suggesting that they have different deep origins. A large-scale L-shaped low-V zone exists under the Keluo, Wudalianchi, Erkeshan, and Xunke volcanoes, characterized by Pn-wave fast propagation directions (FPDs) parallel with the low-V zone, suggesting that these volcanoes may have the same deep origin. Furthermore, southeast-opened U-shaped Pn FPDs exist around the Wudalianchi volcano, whereas NE-SW FPDs appear under the Great Xing'an range, which are generally consistent with SKS splitting measurements. This feature may reflect lithosphere-asthenosphere coupling beneath the Wudalianchi volcano associated with horizontal flows in the big mantle wedge and compressional tectonics under the Great Xing'an range. These results shed new lights on the Wudalianchi volcanism and mantle dynamics beneath Northeast China.