ABSTRACTStress‐induced plant volatiles play an important role in mediating ecological interactions between plants and their environment. The timing and location of the inflicted damage is known to influence the quality and quantity of induced volatile emissions. However, how leaf characteristics and herbivore feeding behaviour interact to shape volatile emissions is not well understood. Using a high‐throughput volatile profiling system with high temporal resolution, we examined how mechanical damage and herbivore feeding on different leaves shape plant‐level volatile emission patterns in maize. We then tested feeding patterns and resulting consequences on volatile emissions with two generalist herbivores (Spodoptera exigua and Spodoptera littoralis), and assessed whether feeding preferences are associated with enhanced herbivore performance. We found maize seedlings emit more volatiles when larger leaves are damaged. Larger leaves emitted more volatiles locally, which was the determining factor for higher plant‐level emissions. Surprisingly, both S. exigua and S. littoralis preferentially consumed larger leaves, and thus maximize plant volatile emission without apparent growth benefits. Together, these findings provide an ecophysiological and behavioural mechanism for plant volatile emission patterns, with potentially important implications for volatile‐mediated plant‐environment interactions.
Read full abstract