A novel method for the determination of trace arsenic (As) by photochemical vapor generation (PVG) with inductively coupled plasma mass spectrometry measurement was developed in this study. The synergistic effect from antimony (Sb) and cadmium (Cd) was found for the photochemical reduction of As for the first time. Effective photochemical reduction of As was obtained in the system containing 10% (v/v) acetic acid, 5.0 mg L-1 Sb(III), and 20.0 mg L-1 Cd(II) with 100 s UV irradiation. Analytical sensitivity of As(III) was comparable with that of As(V) under the tested conditions, making direct determination of total As feasible. Compared to the pneumatic nebulization method, analytical sensitivity of the developed method was enhanced about 50 folds. The PVG efficiency was estimated up to be 99 ± 3%. The limit of detection (LOD) (3σ) was found to be 2.1 ng L-1 for As, which was improved about 30-fold compared to that using direct sample introduction solution nebulization. Considering the sample dilution prior to analysis (usually one-fold), the LOD was actually enhanced about 15 folds. The relative standard deviations of seven replicate measurements of 1.0 μg L-1 As(III) and As (V) standard solutions were 2.3 and 2.9% for As(III) and As(V), respectively. The proposed method was successfully applied for the detection of As in certified reference materials of sediments (GBW07303a and GBW07305a), as well as three water samples. The mechanism of the PVG system was investigated by using gas chromatography mass spectrometry, electron paramagnetic resonance, and X-ray photoelectron spectroscopy. (CH3)3As along with (CH3)3Sb were synthesized under UV irradiation. Besides, volatile species of Cd were also found. The result obtained in this study is useful for developing efficient "sensitizers" in PVG and understanding the transformation of As in the presence of hydride/cold vapor forming elements in the photochemical process.
Read full abstract