Abstract— By adopting a suggestion made by Thomason, a new failure criterion for the Gurson‐Tvergaard model has been recently introduced by the authors. In this study, a method based on the Gurson‐Tvergaard constitutive model and the new failure criterion is applied to the analysis of ductile fracture. The main features of the method are that the material failure is a natural process of the development of Thomason's dual dilational constitutive responses, and the void volume fraction corresponding to the failure by void coalescence is not necessarily a material constant and is not needed to be fitted beforehand. Furthermore, void nucleation parameter(s) can be numerically fitted from experimental tension results. This method has been implemented into the ABAQUS finite element program via a user material subroutine and is applied to the prediction of tension problems conducted by the authors. In the analyses, two strain‐controlled void nucleation models have been studied and compared. The void nucleation parameters corresponding to the two models have been calibrated. The crack initiation of both smooth and notched axisymmetric tensile specimens are well predicted by the method. Finally, several critical issues in the analysis of ductile fracture are discussed.
Read full abstract