Allosteric glutaminase inhibitors demonstrate inhibition of glutamine-dependent cancer cells with low general drug toxicity, but have issues with efficacy in vivo. Here, we designed a series of diselenide compounds with 6 atoms in the middle, aiming to target the allosteric site of kidney type glutaminase (KGA) with a covalent linkage to strengthen the interaction. Proteomic analysis demonstrated that the diselenide compounds cross-linked with the Lys320 residue at the KGA allosteric site; this was confirmed by the KGA K320A mutant which showed essentially no binding to the diselenide. Further, structure-activity relationship (SAR) analysis demonstrated that growth inhibition correlated well with KGA inhibition and was enhanced by thioredoxin reductase (TrxR) inhibition. Interestingly, diselenide compounds showed no inhibition of glutamate dehydrogenase (GDH), indicating some enzyme selectivity. Importantly, the designed novel diselenides are glutaminase allosteric inhibitors that showed in vivo efficacy and survival in the xenograft animal model.