BackgroundCryopreservation of isolated follicles may be a potential option to restore fertility in young women with cancer, because it can prevent the risks of cancer transmission. Several freezing protocols are available, including slow-rate freezing, open-pulled straws vitrification (OPS) and solid-surface vitrification (SSV, a new freezing technique). The purpose of our study was to investigate the effects of these freezing procedures on viability, ultrastructure and developmental capacity of isolated rat follicles.MethodsIsolated follicles from female Sprague-Dawley rats were randomly assigned to SSV, OPS and slow-rate freezing groups for cryopreservation. Follicle viability assessment and ultrastructural examination were performed after thawing. In order to study the developmental capacity of thawed follicles, we performed in vitro culture with a three-dimensional (3D) system by alginate hydrogels.ResultsOur results showed that the totally viable rate of follicles vitrified by SSV (64.76%) was slightly higher than that of the OPS group (62.38%) and significantly higher than that of the slow-rate freezing group (52.65%; P < 0.05). The ultrastructural examination revealed that morphological alterations were relatively low in the SSV group compared to the OPS and slow-rate freezing groups. After in vitro culture within a 3D system using alginate hydrogels, we found the highest increase (28.90 ± 2.21 μm) in follicle diameter in follicles from the SSV group. The estradiol level in the SSV group was significantly higher than those in the OPS and slow-rate freezing groups at the end of a 72-hr culture period (P < 0.05).ConclusionsOur results suggest that the SSV method is an appropriate and convenient method for cryopreservation of isolated rat follicles compared with the conventional slow-rate freezing method and the OPS method.
Read full abstract