Cell differentiation is a complex process orchestrated by sets of regulators precisely appearing at certain time points, resulting in regulatory cascades that affect the expression of broader sets of genes, ending up in the formation of different tissues and organ parts. The identification of stage-specific master regulators and the mechanism by which they activate each other is a key to understanding and controlling differentiation, particularly in the fields of tissue regeneration and organoid engineering. Here we present a workflow that combines a comprehensive general regulatory network based on binding site predictions with user-provided temporal gene expression data, to generate a a temporally connected series of stage-specific regulatory networks, which we call a temporal regulatory cascade (TRC). A TRC identifies those regulators that are unique for each time point, resulting in a cascade that shows the emergence of these regulators and regulatory interactions across time. The model was implemented in the form of a user-friendly, visual web-tool, that requires no expert knowledge in programming or statistics, making it directly usable for life scientists. In addition to generating TRCs the tool links multiple interactive visual workflows, in which a user can track and investigate further different regulators, target genes, and interactions, directing the tool along the way into biologically sensible results based on the given dataset. We applied the TRC model on two different expression datasets, one based on experiments conducted on human induced pluripotent stem cells (hiPSCs) undergoing differentiation into mature cardiomyocytes and the other based on the differentiation of H1-derived human neuronal precursor cells. The model was successful in identifying previously known and new potential key regulators, in addition to the particular time points with which these regulators are associated, in cardiac and neural development.