Visual perception of shape is affected by coding of local convexities and concavities. For instance, a recent study reported that deviations from symmetry carried by convexities were easier to detect than deviations carried by concavities. We removed some confounds and extended this work from a detection of reflection of a contour (i.e., bilateral symmetry), to a detection of repetition of a contour (i.e., translational symmetry). We tested whether any convexity advantage is specific to bilateral symmetry in a two-interval (Experiment 1) and a single-interval (Experiment 2) detection task. In both, we found a convexity advantage only for repetition. When we removed the need to choose which region of the contour to monitor (Experiment 3) the effect disappeared. In a second series of studies, we again used shapes with multiple convex or concave features. Participants performed a change detection task in which only one of the features could change. We did not find any evidence that convexities are special in visual short-term memory, when the to-be-remembered features only changed shape (Experiment 4), when they changed shape and changed from concave to convex and vice versa (Experiment 5), or when these conditions were mixed (Experiment 6). We did find a small advantage for coding convexity as well as concavity over an isolated (and thus ambiguous) contour. The latter is consistent with the known effect of closure on processing of shape. We conclude that convexity plays a role in many perceptual tasks but that it does not have a basic encoding advantage over concavity.