The increasing interest in developing robots capable of navigating autonomously has led to the necessity of developing robust methods that enable these robots to operate in challenging and dynamic environments. Visual odometry (VO) has emerged in this context as a key technique, offering the possibility of estimating the position of a robot using sequences of onboard cameras. In this paper, a VO algorithm is proposed that achieves sub-pixel precision by combining optical flow and direct methods. This approach uses only a downward-facing, monocular camera, eliminating the need for additional sensors. The experimental results demonstrate the robustness of the developed method across various surfaces, achieving minimal drift errors in calculation.
Read full abstract