Abstract

This work aims to introduce a novel approach for auxiliary task guidance (ATG). In this approach, our goal is to achieve effective guidance from a suitable auxiliary task by utilizing the uncertainty in calculated gradients for a mini-batch of samples. Our method calculates a probabilistic fitness factor of the auxiliary task gradient for each of the shared weights to guide the main task at every training step of mini-batch gradient descent. We have shown that this proposed factor incorporates task specific confidence of learning to manipulate ATG in an effective manner. For studying the potency of the method, monocular visual odometry (VO) has been chosen as an application. Substantial experiments have been done on the KITTI VO dataset for solving monocular VO with a simple convolutional neural network (CNN) architecture. Corresponding results show that our ATG method significantly boosts the performance of supervised learning for VO. It also out performs state-of-the-art (SOTA) auxiliary guided methods we applied for VO. The proposed method is able to achieve decent scores (in some cases competitive)compared to existing SOTA supervised monocular VO algorithms, while keeping an exceptionally low parameter space in supervised regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.