Since the physiological background of motion sickness is not entirely clear, it was aimed to examine the physiological differences in groups consisting of individuals susceptible and non-susceptible to motion sickness. Sixty subjects [motion sickness (MS) group: 33 female, 3 male; 28.8 ± 8.1 years; control group: 19 female, 5 male; 24.5 ± 4.3 years] were included in the study. Near visual acuity test on the treadmill in the presence of visual stimulation, pattern visual-evoked potentials, oculomotor tests, and computerized dynamic posturography were applied. Receiver operating characteristic analysis was performed to determine the parameter that provides the excellent discrimination between the groups. The most effective parameter in differentiating the study groups was determined as dynamic visual acuity with 77.8% sensitivity and 95.8% specificity. Significant differences were found in the vestibular (mean ± standard deviation: 0.63 ± 0.17), visual (0.77 ± 0.18), and composite scores (73.11 ± 11.89) of the patients (P=.000) in posturographic evaluation. In the visual-evoked potential examination, a significant decrease was found in the amplitude values between the P100-N145 waves in the binocular (5.0 ± 2.8, P=.002), right eye (7.6 ± 3.2, P=.009) and left eye (7.9 ± 2.9, P=.016) in the symptomatic patients. In binocular oculomotor evaluation, directional asymmetric findings were obtained. It has been shown that the most effective test parameter that distinguishes the MS susceptible and non-susceptible individuals is the dynamic visual acuity value. Based on the results of neuro-physiological tests, it was suggested that a possible visual-vestibular integration disorder in individuals susceptible to motion sickness may affect visual and vestibular performance.
Read full abstract