When choosing between options with multiple attributes, do we integrate all attributes into a unified measure for comparison, or does the comparison also occur at the level of each attribute, involving parallel processes that can dynamically influence each other? What happens when independent sensory features all carry information about the same decision factor, such as reward value? To investigate these questions, we asked human participants to perform a two-alternative forced choice reaching task in which the reward value of a target was indicated by two visual attributes-its brightness ("bottom-up," BU feature) and its orientation ("top-down," TD feature). If decisions always occur after the integration of both features, there should be no difference in the reaction time (RT) regardless of the attribute combinations that drove the choice. Counter to that prediction, RT distributions depended on the attribute combinations of given targets and the choices made by participants. RTs were shortest when both attributes were congruent or when the choice was based on the bottom-up feature, and longer when the attributes were in conflict (favoring opposite options). In conflict trials, nearly two-thirds of participants made faster decisions when choosing the option favored by the bottom-up feature than when choosing the top-down-favored option. We also observed mid-reach changes-of-mind in a subset of conflict trials, mostly changing from the bottom-up to the top-down-favored target. These data suggest that multi-attribute value-based decisions are better explained by a distributed process including competition among different features than by a competition based on a single, integrated estimate of value.NEW & NOTEWORTHY We show that during value-based decisions, humans do not always use all reward-related information to make their choice, but instead can "jump the gun" using partial information. In particular, when different sources of information were in conflict, early decisions were mostly based on fast bottom-up information, and sometimes followed by corrective changes-of-mind based on slower top-down information. This supports parallel decision processes among different information sources, as opposed to a single integrated "common currency."