Multiple factors have been proposed to contribute to the other-race effect in face recognition, including perceptual expertise and social-cognitive accounts. Here, we propose to understand the effect and its contributing factors from the perspectives of learning mechanisms that involve joint learning of visual attention strategies and internal representations for faces, which can be modulated by quality of contact with other-race individuals including emotional and motivational factors. Computational simulations of this process will enhance our understanding of interactions among factors and help resolve inconsistent results in the literature. In particular, since learning is driven by task demands, visual attention effects observed in different face-processing tasks, such as passive viewing or recognition, are likely to be task specific (although may be associated) and should be examined and compared separately. When examining visual attention strategies, the use of more data-driven and comprehensive eye movement measures, taking both spatial-temporal pattern and consistency of eye movements into account, can lead to novel discoveries in other-race face processing. The proposed framework and analysis methods may be applied to other tasks of real-life significance such as face emotion recognition, further enhancing our understanding of the relationship between learning and visual cognition.
Read full abstract