A key factor in designing saliency detection algorithms for videos is to understand how different visual cues affect the human perceptual and visual system. To this end, this article investigated the bottom-up features including color, texture, and motion in video sequences for a one-by-one scenario to provide a ranking system stating the most dominant circumstances for each feature. In this work, it is considered the individual features and various visual saliency attributes investigated under conditions in which the authors had no cognitive bias. Human cognition refers to a systematic pattern of perceptual and rational judgments and decision-making actions. First, this paper modeled the test data as 2D videos in a virtual environment to avoid any cognitive bias. Then, this paper performed an experiment using human subjects to determine which colors, textures, motion directions, and motion speeds attract human attention more. The proposed benchmark ranking system of salient visual attention stimuli was achieved using an eye tracking procedure.