This conference brings together real-world practitioners and researchers in intelligent robots and computer vision to share recent applications and developments. Topics of interest include the integration of imaging sensors supporting hardware, computers, and algorithms for intelligent robots, manufacturing inspection, characterization, and/or control. The decreased cost of computational power and vision sensors has motivated the rapid proliferation of machine vision technology in a variety of industries, including aluminum, automotive, forest products, textiles, glass, steel, metal casting, aircraft, chemicals, food, fishing, agriculture, archaeological products, medical products, artistic products, etc. Other industries, such as semiconductor and electronics manufacturing, have been employing machine vision technology for several decades. Machine vision supporting handling robots is another main topic. With respect to intelligent robotics another approach is sensor fusion – combining multi-modal sensors in audio, location, image and video data for signal processing, machine learning and computer vision, and additionally other 3D capturing devices. There is a need for accurate, fast, and robust detection of objects and their position in space. Their surface, background, and illumination are uncontrolled, and in most cases the objects of interest are within a bulk of many others. For both new and existing industrial users of machine vision, there are numerous innovative methods to improve productivity, quality, and compliance with product standards. There are several broad problem areas that have received significant attention in recent years. For example, some industries are collecting enormous amounts of image data from product monitoring systems. New and efficient methods are required to extract insight and to perform process diagnostics based on this historical record. Regarding the physical scale of the measurements, microscopy techniques are nearing resolution limits in fields such as semiconductors, biology, and other nano-scale technologies. Techniques such as resolution enhancement, model-based methods, and statistical imaging may provide the means to extend these systems beyond current capabilities. Furthermore, obtaining real-time and robust measurements in-line or at-line in harsh industrial environments is a challenge for machine vision researchers, especially when the manufacturer cannot make significant changes to their facility or process.
Read full abstract