Simultaneous Localization and Mapping (SLAM) technology has garnered significant interest in the robotic vision community over the past few decades. The rapid development of SLAM technology has resulted in its widespread application across various fields, including autonomous driving, robot navigation, and virtual reality. Although SLAM, especially Visual–Inertial SLAM (VI-SLAM), has made substantial progress, most classic algorithms in this field are designed based on the assumption that the observed scene is static. In complex real-world environments, the presence of dynamic objects such as pedestrians and vehicles can seriously affect the robustness and accuracy of such systems. Event cameras, which use recently introduced motion-sensitive biomimetic sensors, efficiently capture scene changes (referred to as “events”) with high temporal resolution, offering new opportunities to enhance VI-SLAM performance in dynamic environments. Integrating this kind of innovative sensor, we propose the first event-enhanced Visual–Inertial SLAM framework specifically designed for dynamic environments, termed E2-VINS. Specifically, the system uses visual–inertial alignment strategy to estimate IMU biases and correct IMU measurements. The calibrated IMU measurements are used to assist in motion compensation, achieving spatiotemporal alignment of events. The event-based dynamicity metrics, which measure the dynamicity of each pixel, are then generated on these aligned events. Based on these metrics, the visual residual terms of different pixels are adaptively assigned weights, namely, dynamicity weights. Subsequently, E2-VINS jointly and alternately optimizes the system state (camera poses and map points) and dynamicity weights, effectively filtering out dynamic features through a soft-threshold mechanism. Our scheme enhances the robustness of classic VI-SLAM against dynamic features, which significantly enhances VI-SLAM performance in dynamic environments, resulting in an average improvement of 1.884% in the mean position error compared to state-of-the-art methods. The superior performance of E2-VINS is validated through both qualitative and quantitative experimental results. To ensure that our results are fully reproducible, all the relevant data and codes have been released.
Read full abstract