Developing ultraviolet (UV), visible (Vis) and near-infrared (NIR) responsive photocatalysts for Cr(VI) reduction is valuable. Herein, a 0-dimentionnal/1-dimentional (0D/1D) S-scheme Ag2S/BiSI hetero-structured photocatalyst was successfully synthesized, which displays greatly enhanced Cr(VI) removal activity either under UV, Vis or NIR light irradiation. In-situ characterization technique and theoretical calculation confirm that an internal electric field (IEF), directing from Ag2S to BiSI, exists between the interface, which facilitates the spatial-oriented separation of photoirradiated carriers. Furthermore, the immobilization of Cr2O72− and the transformation from *Cr2O72− to *CrO3H2 on the surface of S-scheme Ag2S/BiSI heterostructure is much more favorable than that on the surface of single Ag2S or BiSI. This work gives a comprehensive insight on the design of full spectrum responsive S-scheme photocatalysts for heavy metal removal.
Read full abstract