Cross-sensor compatibility of spectral vegetation indices (VIs) between Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) was investigated using their near-coincident observation pairs obtained along overlapped orbital tracks across the globe for the year 2015. The “top-of-atmosphere (TOA)” and “top-of-canopy (TOC)” normalized difference vegetation indices (NDVIs), TOC-enhanced vegetation index (EVI), and TOC two-band EVI (EVI2) were investigated. For all four VIs, VIIRS and MODIS VIs were subject to systematic differences in which VIIRS VIs were higher than their MODIS counterparts. The overall systematic differences and uncertainties (measured as mean differences and root mean square differences, respectively) were small (0.010 to 0.020 VI units and 0.015 to 0.022 VI units, respectively). TOA NDVI cross-sensor differences were neither seasonally nor view zenith angle dependent, whereas TOC NDVI cross-sensor differences slightly varied seasonally, but were not view zenith angle dependent. TOC EVI and TOC EVI2 cross-sensor differences were view zenith angle dependent, where systematic differences increased with increasing view zenith angle and, for large view zenith angles, they were higher during the summer seasons. These results support the normalization of view zenith angles as a required step to extend the MODIS VI record with VIIRS data.
Read full abstract