3D bioprinting with cell-laden materials is an emerging technique for fabricating functional tissue constructs. However, current cell-laden bioinks often lack sufficient cytocompatibility with commonly used UV-light sources. In this study, green to red photoinduced hydrogel crosslinking was obtained by introducing synthesized biosafety photoinitiators and used in light-based direct ink writing (DIW) 3D printing for enabling cell encapsulation successfully. The novel type II photointiators contain iodonium (ONI) and synthesized cyanine dyes CZBIN, TDPABIN, Col-SH-CZ, and Col-SH-TD with strong absorption in the range of 400–600 nm. Collagen-based macromolecule dyes Col-SH-CZ and Col-SH-TD showed excellent cytocompatibility. The photochemistry of these photoinitiators revealed an efficient photoinduced electron transfer (PET) process from the singlet excited states of the dyes to iodonium (ONI), facilitating the crosslinking of the biogels. L929 cells were encapsulated in Gel-MA hydrogels containing various photoinitiating systems and exposed to near-ultraviolet, green, or red LED irradiation. DIW-type 3D printing of Gel-MA bioink with L929 cells was also evaluated. The cell viability achieved with green light encapsulation reached 90 %. This novel approach offers promising prospects for bioprinting functional tissues with enhanced cytocompatibility under visible light conditions.
Read full abstract