This study investigated the influence of Konjac Glucomannan (KGM) with varying degrees of polymerization (DKGMx) on the gelatinization and retrogradation characteristics of wheat starch, providing new insights into starch-polysaccharide interactions. This research uniquely focuses on the effects of DKGMx, utilizing multidisciplinary approaches including Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), rheological testing, Low-Field Nuclear Magnetic Resonance (LF-NMR), and molecular simulations to assess the effects of DKGMx on gelatinization temperature, viscosity, structural changes post-retrogradation, and molecular interactions. Our findings revealed that higher degrees of polymerization (DP) of DKGMx significantly enhanced starch's pasting viscosity and stability, whereas lower DP reduced viscosity and interfered with retrogradation. High DP DKGMx promoted retrogradation by modifying moisture distribution. Molecular simulations revealed the interplay between low DP DKGMx and starch molecules. These interactions, characterized by increased hydrogen bonds and tighter binding to more starch chains, inhibited starch molecular rearrangement. Specifically, low DP DKGMx established a dense hydrogen bond network with starch, significantly restricting molecular mobility and rearrangement. This study provides new insights into the role of the DP of DKGMx in modulating wheat starch's properties, offering valuable implications for the functional improvement of starch-based foods and advancing starch science.
Read full abstract