To make backfilling body meet strength requirement, physical-chemical evaluation and proportioning tests were conducted on several backfilling materials. Jigging sands, #32.5 cement and fly ash were determined as backfilling aggregate, binding material and modified material, respectively. An optimized proportion of backfilling materials with a solid mass fraction of 78% and cement: fly ash: jigging sands mass ratio of 1:2:14, was suggested to Jiangan Pyrite Mine, China. The slurry made by optimized proportion produced obvious shear thinning phenomena, and was confirmed as paste-like slurry. To analyze its rheological characteristics, L-type pipeline test and Haake VT550 rotational viscometer test were conducted. Bingham and Casson fluid models were applied to several paste-like slurry samples to simulate flow and stress states; Casson fluid model was proved to have better simulation effect on paste-like slurry with shear thinning phenomena; rheological parameters of backfilling slurry made by suggested proportion were measured. Initial yield stress, average apparent viscosity and limiting viscosity are 55.35 Pa, 1.216 Pa·s and 0.48 Pa·s, respectively. Compared with Bingham fluid model, Casson fluid model has a better simulation effect on paste-like slurry with shear thinning phenomena, through calculating the residual standard deviations.
Read full abstract