Based on the three-dimensional Gurtin-type variational principle of the incompressible saturated porous media, a one-dimensional mathematical model for dynamics of the saturated poroelastic Timoshenko cantilever beam is established with two assumptions, i.e., the deformation satisfies the classical single phase Timoshenko beam and the movement of the pore fluid is only in the axial direction of the saturated poroelastic beam. Under some special cases, this mathematical model can be degenerated into the Euler-Bernoulli model, the Rayleigh model, and the shear model of the saturated poroelastic beam, respectively. The dynamic and quasi-static behaviors of a saturated poroelastic Timoshenko cantilever beam with an impermeable fixed end and a permeable free end subjected to a step load at its free end are analyzed by the Laplace transform. The variations of the deflections at the beam free end against time are shown in figures. The influences of the interaction coefficient between the pore fluid and the solid skeleton as well as the slenderness ratio of the beam on the dynamic/quasi-static performances of the beam are examined. It is shown that the quasi-static deflections of the saturated poroelastic beam possess a creep behavior similar to that of viscoelastic beams. In dynamic responses, with the increase of the slenderness ratio, the vibration periods and amplitudes of the deflections at the free end increase, and the time needed for deflections approaching to their stationary values also increases. Moreover, with the increase of the interaction coefficient, the vibrations of the beam deflections decay more strongly, and, eventually, the deflections of the saturated poroelastic beam converge to the static deflections of the classic single phase Timoshenko beam.