In view of the phenomenon that adulterated lamb with other animal-derived meats in the market could not be quickly identified, this study used visible near-infrared spectroscopy combined with chemometric methods to quickly identify and quantify lamb rolls adulterated with chicken, duck, and pork. The spectra of the visible–near-infrared band (350–1000 nm) and near-infrared band (1000–1700 nm) of 360 lamb samples, which were mixed with chicken, duck, pork, and 10% lamb oil separately in different increasing proportions, were collected. It was found that the qualitative models of heterogeneous meat (adulterated with chicken, duck, and pork) in lamb were constructed by the combination of first derivative and multiplicative scatter correction (MSC); the accuracy of the validation set reached 100%; the meantime accuracy of the cross-validation set reached 100% (pure lamb), 98.3% (adulterated with chicken), 98.7% (adulterated with duck), and 97.3% (adulterated with pork). Furthermore, the correlation coefficient (R2c) of the adulterated chicken, pork, and duck quantitative prediction models reached 0.972 (chicken), 0.981 (pork), and 0.985 (duck). In summary, the use of Vis NIR can identify lamb meat mixed with chicken, duck, and pork and can quantitatively predict the content of adulterated meat.