BackgroundThe increase of inflammation-inducing enterobacteria was recently observed in severe hand, foot, and mouth disease (HFMD) caused by Enterovirus A71 (EV-A71). This study aimed to verify the occurrence of bacterial translocation (BT) and further explore the contributory role of BT to severity of EV-A71-mediated HFMD cases.MethodsSerum specimens from 65 mild and 65 severe EV-A71-associated HFMD cases and 65 healthy children were collected. EV-A71 VP1 in serum, inflammatory mediators including C-reactive protein, IL-1β, IL-6, interferon-γ and tumor necrosis factor-α, BT related biomarkers including Claudin-3, intestinal fatty acid binding protein, lipopolysaccharide (LPS), soluble CD14 (sCD14) and endotoxin core antibody were measured by ELISA. Bacterial DNA (BactDNA) fragments were quantified by quantified PCR (qPCR). Rhabdomyosarcoma (RD) or SH-SY5Y cells, infected with LPS-pre-incubated EV-A71 or transfected with plasmid containing viral 2Apro or mRNA containing viral internal ribosomal entry site (IRES), were post-treated with or without LPS in vitro. EV-A71 RNA and viral or cellular proteins were determined by qPCR and western blot, respectively.ResultsCompared to mild HFMD patients, remarkably higher inflammatory mediators as well as BT-related biomarkers except BactDNA were observed in severe HFMD cases (all P < 0.05). In severe HFMD group, circulating concentrations of LPS and sCD14 showed statistical correlations with inflammation indices (all P < 0.05), serum levels of EV-A71 VP1 were found to be positively correlated with serum LPS (r = 0.341, P = 0.005) and serum sCD14 (r = 0.458, P < 0.001). In vitro, EV-A71 attachment and internalization were only slightly promoted by LPS pre-incubation; however, EV-A71 proliferation and viral 2Apro-mediated IRES activity were significantly accelerated by LPS post-treatment.ConclusionsOur results collectively indicate that gut-derived translocating LPS contributes to the severity of EV-A71-induced HFMD by driving inflammatory response and viral proliferation via viral 2Apro-mediated IRES.