Isothermal nucleic acid amplification tests, NAATs, such as reverse transcription-loop-mediated isothermal amplification (RT-LAMP), offer promising capabilities to perform real-time semiquantitative detection of viral pathogens. These tests provide rapid results, utilize simple instrumentation for single-temperature reactions, support efficient user workflows, and are suitable for field use. Herein, we present a novel and robust method for real-time monitoring of HIV-1 RNA RT-LAMP utilizing a novel implementation of particle diffusometry (PD), a diffusivity quantification technique using fluorescent particles, to quantify viral concentration in nuclease-free water. We monitor changes in particle diffusion dynamics of 400 nm fluorescently labeled particles throughout the RT-LAMP of HIV-1 RNA in nuclease-free water, enabling measurement within 20 min and detection of concentrations as low as 25 virus particles per μL. Moreover, in a single-blind study, we demonstrate semiquantitative detection by accurately determining the initial concentration of an unknown HIV-1 RNA within a 10% absolute error margin. These results highlight the potential of real-time PD readout for quantifying HIV-1 RNA via RT-LAMP, offering promise for viral load monitoring of HIV and other chronic infections.
Read full abstract