Arthropod-derived cell lines serve as crucial tools for studying arthropod-borne viruses (arboviruses). However, it has recently come to light that certain cell lines harbor persistent infections of arthropod-specific viruses, which do not cause any apparent cytopathic effects. Moreover, some of these persistent viral infections either inhibit or promote the growth of arboviruses. Therefore, it is of utmost importance to identify the presence of such persistent viruses and understand their impact on arboviral infections. In this study, we conducted a comprehensive virome analysis of several arthropod-derived cell lines, including mosquito-derived NIID-CTR, Ar-3, MSQ43, NIAS-AeAl-2, CCL-126 cells, and tick-derived IDE8 cells, along with flesh fly-derived NIH-Sape-4 cells. The aim was to determine if these cells were infected with persistent viruses. The results revealed the presence of 15 persistent viruses in NIID-CTR, Ar-3, MSQ43, NIAS-AeAl-2, and IDE8 cells. Among these, 11 were already known arthropod-specific viruses, while the remaining 4 were novel viruses belonging to Orthophasmavirus, Rhabdoviridae, Totiviridae, and Bunyavirales. In contrast, CCL-126 and NIH-Sape-4 cells appeared to be free of viral infections. This study provides valuable insights into the diversity and latency of arthropod-specific viruses within arthropod-derived cell lines. Further investigations are required to explore persistent viral infections in other arthropod-derived cell cultures and their effects on arbovirus replication. Understanding these factors will enhance the accuracy and reliability of experimental data obtained using these cell lines.
Read full abstract