A novel approach to three-dimensional (3D) visualization of high quality, respiratory compensated cardiac magnetic resonance (MR) data is presented with the purpose of assisting the cardiovascular surgeon and the invasive cardiologist in the pre-operative planning. Developments included: (1) optimization of 3D, MR scan protocols; (2) dedicated segmentation software; (3) optimization of model generation algorithms; (4) interactive, virtual reality visualization. The approach is based on a tool for interactive, real-time visualization of 3D cardiac MR datasets in the form of 3D heart models displayed on virtual reality equipment. This allows the cardiac surgeon and the cardiologist to examine the model as if they were actually holding it in their hands. To secure relevant examination of all details related to cardiac morphology, the model can be re-scaled and the viewpoint can be set to any point inside the heart. Finally, the original, raw MR images can be examined on line as textures in cut-planes through the heart models.