Giardia duodenalis, an important zoonotic protozoan parasite, adheres to host intestinal epithelial cells (IECs) via the ventral disc and causes giardiasis characterized mainly by diarrhea. To date, it remains elusive how excretory-secretory products (ESPs) of Giardia enter IECs and how the cells respond to the entry. Herein, we initially demonstrated that ESPs evoked IEC endocytosis in vitro. We indicated that ESPs contributed vitally in triggering intrinsic apoptosis, pro-inflammatory responses, tight junction (TJ) protein expressional changes, and autophagy in IECs. Endocytosis was further proven to be implicated in those ESPs-triggered IEC responses. Ten predicted virulent excretory-secretory proteins of G. duodenalis were investigated for their capability to activate clathrin/caveolin-mediated endocytosis (CME/CavME) in IECs. Pyridoxamine 5'-phosphate oxidase (PNPO) was confirmed to be an important contributor. PNPO was subsequently verified as a vital promoter in the induction of giardiasis-related IEC apoptosis, inflammation, and TJ protein downregulation. Most importantly, this process seemed to be involved majorly in PNPO-evoked CME pathway, rather than CavME. Collectively, this study identified Giardia ESPs, notably PNPO, as potentially important pathogenic factors during noninvasive infection. It was also noteworthy that ESPs-evoked endocytosis might play a role in triggering giardiasis-inducing cellular regulation. These findings would deepen our understanding about the role of ESPs, notably PNPO, in the pathogenesis of giardiasis and the potential attributed endocytosis mechanism.