We present a configurational-biased lattice Monte Carlo scheme for simulating nonideal dendrimers that satisfies detailed balance. This corrects an important shortcoming in a previous lattice Monte Carlo scheme by Mansfield and Klushin: in a previous publication, we showed that the Mansfield and Klushin scheme did not obey detailed balance, and that this led to surprisingly large errors in the radius of gyration Rg and scattering form factor P(q) for ideal dendrimers. In this paper, we have calculated the radius of gyration, the form factor, and the intramolecular density profile for g = 1−8 self-avoiding dendrimers and find that our results are qualitatively the same as previous results obtained by Mansfield and Klushin (g is the generation number). This indicates that the error in the Mansfield and Klushin scheme due to detailed balance violation is much smaller for self-avoiding dendrimers. Our other key conclusions concerning the equilibrium properties of self-avoiding dendrimers are the following: ...