The 5-trans-vinylcarboxylic acid analogue of pyridoxal 5'-phosphate has been prepared. Its pKa values were determined as 3.08, 4.10, and 7.33. The third pKa, that of the pyridinium nitrogen, is considerably lower than that of 8.2 observed for the corresponding saturated compound, 5'-carboxymethyl-5'-deoxypyridoxal. Absorption spectra of individual ionic forms have been resolved into component bands using lognormal distribution curves. The vinylcarboxylic acid analogue inactivates apoaspartate aminotransferase slowly at pH 8.3. An initial product absorbs at 26 kK (385 nm) and is converted slowly to a species with a narrow absorption band at 24.0 kK (417 nm). Meanwhile, the circular dichroism in the same region changes from positive to negative. At pH 5.2 the product abosrbs at 25.2 kK (397 nm). The 24.0-kK (417 nm) form is not reducible with sodium borohydride and the tightly bound chromophore is not released from the protein during denaturation by acid, base, or heat. L-Glutamate and erythro-beta-hydroxyaspartate both facilitate the formation of the 24.0-kK form. The reaction of the analogue with apoenzyme in the presence of erythro-beta-hydroxyaspartate is also accompanied by transient peaks, presumably representing quinonoid forms, at 19.0 kK (526 nm) and 20.3 kK (492 nm). The analogue reacts at basic pH with arginine, alpha-amino-gamma-guanidinobutyric acid, ornithine, cysteine, alpha, gamma-diaminobutyric acid, eh narrow absorption bands centered in the 24.0-24.4-kK (417-410 nm) region and resembling the product formed with the apoenzyme. Nuclear magnetic resonance and absorption spectroscopy indicate that the reaction with alpha- gamma-diaminobutyric acid proceeds via a hexahydropyrimidine derivative to a substituted tetrahydropyrimidine (a cyclic Schiff base) which is the final product. A similar reaction sequence with the apoenzyme is postulated and a structure with an unknown X group from the enzyme replacing the gamma-amino group of alpha, gamma-diaminobutyric acid is proposed for the 24.0-kK (417 nm) chromophore obtained with the apoenzyme. The proposed reactions are closely related to enzymatic and nonenzymatic reactions of pyridoxal 5'-sulfate (Yang, I. -Y., Khomutov, R. M., and Metzler, D. E. (1974), Biochemistry 13, 3877).